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The impact of climate change on
mortality in the United States: Benefits
and costs of adaptation
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Abstract. This paper reviews and extends the recent empirical literature on the impact
of climate change on mortality and adaptation in the United States. The analysis pro-
duces several new facts. First, the reductions in the impact of extreme heat on mortality
risk previously documented up to 2004 have continued up to 2019, consistent with con-
tinued investments in health-protecting adaptations to high temperatures. The second
part of the paper examines the private and external costs of electricity generation and
consumption related to high temperatures, a commonly used proxy for measuring the
consumption of adaptation services. Extreme temperatures increase electricity demand
in the residential sector (relative to moderate temperatures), but not in the commer-
cial, industrial and transportation end-use sectors. The additional electricity demand in
response to high temperatures results in significant external costs due to the release of
local and global pollutants caused by the combustion of fossil fuels in order to produce
electricity. These external costs, documented for the first time in this paper, are one
order of magnitude larger than the private cost of adaptation associated with electricity
consumption.

Résumé. Les répercussions du changement climatique sur la mortalité aux États-Unis:
avantages et coûts liés à l’adaptation. Cet article examine et approfondit la littérature
empirique récente sur les impacts du changement climatique sur la santé et l’adaptation
aux États-Unis. L’analyse met en lumière plusieurs nouveaux faits. Tout d’abord, les
réductions des effets de la chaleur extrême sur le risque de décès étayées dans les
études menées jusqu’à 2004 se sont poursuivies jusqu’en 2019, ce qui est conforme aux
investissements continus dans les mesures d’adaptation pour protéger la santé face aux
températures élevées. La deuxième partie de l’article examine les coûts privés et externes
de la production et de la consommation d’électricité due aux températures élevées, une
approximation souvent utilisée pour mesurer la consommation de services d’adaptation.
Les températures extrêmes augmentent la demande d’électricité du secteur résidentiel
(par rapport aux températures modérées), mais pas da dans les secteurs commerciaux,
industriels et de celui des transports. La demande d’électricité supplémentaire en réponse
aux températures élevées se traduit par des coûts externes importants en raison de
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l’émission de polluants locaux et mondiaux causés par la combustion de combustibles
fossiles pour produire l’électricité. Ces coûts externes, presentés pour la première fois
dans cet article, sont importants et d’un ordre de grandeur supérieur au coût privé de
l’adaptation associée à la consommation d’électricité.

JEL classification: I10, Q54, Q51, Q40

1. Introduction

The last seven years have been the warmest years ever experienced, as
defined by the global average temperature. The year 2021 was a banner

year for extreme weather events, where among others, we witnessed Hurricane
Ida, historical summer floods in Europe and China and one of the most severe
heat waves ever in the Pacific Northwest, where the village of Lytton, British
Columbia, burned to the ground after recording a temperature of 49.6 ◦C. The
accumulation of such destructive events and the pronounced rising trend in
global average temperature underscore how climate change is already affecting
the well-being of an increasingly large share of the world’s population.

A sizable empirical literature in economics has focused on documenting
and understanding how extreme temperature and climate change will impact
human health and on determining the effectiveness of various adaptation mea-
sures (Deschenes and Greenstone 2011, Barreca et al. 2016, Carleton et al.
2020).1 This line of research provides key information for policymakers who
need to align the costs of investments in climate change mitigation with the
social benefits of avoiding climate change. Human health is expected to be
one of the largest impact margins of climate change. For example, Hsiang
et al. (2017) estimate that 70% of the end-of-century costs of climate change
in the United States will be due to monetized value of the excess mortality
attributable to climate change.

Such projections ignore the private and external cost of adaptative
measures that attempt to mitigate the health impact of high temperatures
through greater usage of cooling technologies, which require additional
electricity consumption. In parts of the world where cooling demand is
expected to increase, the addition of those costs would only further magnify
estimates of the total costs of climate change on human health. For example,
Deschenes and Greenstone (2011) find that the private cost of energy demand
in response higher temperatures under the Hadley 3 A1FI climate change
scenario is about half of the monetized valuation of the increase in mortality
under the same scenario.

Despite important progress in the literature, several gaps remain and
motivate additional and new research. In particular, many of the empiri-
cal estimates of the impact of extreme temperature on mortality rates and

1 See also Heutel et al. (2021) and Mullins and White (2020).
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electricity consumption exclude the most recent decade, which is problematic
because the 2010s is the hottest decade on record. Additionally, while there
is good empirical evidence on the private costs of climate change adaptation
due to increased electricity demand in response to high temperatures, little
is known about the external costs of such adaptation. Electricity generation
in the United States and in most other countries continues to rely heavily on
natural gas and coal, and a nascent literature has quantified the impacts of
fossil-fueled generation on emissions of air pollutants associated with negative
effects on health (Deschenes et al. 2017, Jarvis et al. 2022).

This paper aims to make three contributions to this important litera-
ture by expanding the temporal scope and the set of outcomes relevant to
the temperature–adaptation–mortality nexus in the United States. First, I
compile and analyze a new data set on monthly mortality rates at the US
county level for the periods 1960 to 1988 and 2000 to 2019. Combined with
daily weather data appropriately aggregated to the monthly level, I produce
a much-needed update of the estimate of the temperature–mortality relation-
ship to include the most recent years. Second, I update the empirical estimates
of the temperature–residential electricity consumption relationship to cover
the period 1960 to 2019 and to other end-use sectors. Electricity demand in
response to high temperatures is the primary observable proxy for demand
for adaptation services through cooling technologies considered in the previ-
ous literature (e.g., Rode et al. 2021). This longer sample allows testing for
changes in the relationship over time and also provide estimates of the effect of
temperature fluctuations on electricity consumption in end-use sectors other
than residential. Finally, I use monthly data on output and emissions from
fossil fuel power plants in the US to provide the first empirical estimates of the
effect of temperature fluctuations on emissions from power plants. I also link
plant-specific estimates of the economic damages from power plant emissions
to calculate the magnitude of the external costs associated with temperature
shocks.

To this end, I use panel data regressions to estimate the relationship
between the key outcomes (monthly mortality rates, annual electricity con-
sumption and monthly emissions from power plants) and daily average tem-
peratures, aggregated to relevant location–time scale using the temperature
binning approach first presented in Deschenes and Greenstone (2011), while
also controlling for precipitation, location fixed effects and time fixed effects.
Up to the choice of the width of the temperature bins, this simple approach
allows for arbitrary nonlinearity in the estimated relationships between the
outcomes and temperature.

The empirical analysis is implemented with detailed and comprehensive
publicly available data on mortality rates from the National Center for Health
Statistics and the Centers for Disease Control and Prevention, electricity con-
sumption by end-use sector from the Energy Information Administration,
electricity production and emissions of pollutants from the US Environmental
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Protection Agency’s Clean Air Markets Division and daily weather records
from the Global Historical Climatology Network.

The empirical analysis produces several important new results. First, I
show that the reductions in the impact of extreme heat on mortality risk
documented in Barreca et al. (2016) have continued up to 2019. Remarkably,
the estimate of the relative effect of a day with average temperature exceeding
90 ◦F (32 ◦C) has declined by 75% between 2000 and 2019, while average
temperature between 80 ◦F and 89 ◦F (27.7 ◦C and 31 ◦C) no longer predict
statistically significant increases in mortality rates.2 This is an important
result since exposure to days in these temperature ranges is expected to
increase in the future. In contrast, exposure to colder temperatures (i.e.,
less than 30 ◦F (−1.1 ◦C)) continues to cause sizable increases in mortality
risk. By estimating the temperature–mortality relationship for 1960–1988
and 2000–2019 separately, I can also calculate predicted annual heat-related
mortality for each US county under both sets of estimates for a counterfactual
scenario where the temperature–mortality relationship for 1960–1988 is
applied to a daily average temperature distribution for 2000–2019. The
result, which I label “gains from adaptation” indicate substantial gains
in adaptation to heat over time, but little in terms of adaptation to cold
temperature.

Second, I estimate the relationship between annual electricity consump-
tion and daily temperatures in the US residential sector. Each day of average
temperature in excees of 90 ◦F (32 ◦C) increases annual electricity consump-
tion by 0.4% to 0.5% relative to the reference temperature. The relative effect
of colder temperatures is also statistically significant, but smaller. While the
estimates of the temperature–electricity demand relationship are less pre-
cise due to the more aggregated nature of the data (state level instead of
county level), I find no clear evidence of a temporal change in the estimated
relationship between the 1960–1988 and 2000–2019 periods. The patterns
documented for the effect of temperature variation on electricity consump-
tion in the residential sector are not observed in other end-use sectors. In
particular, I find that electricity demand in the commercial, industrial and
transportation sectors is mostly independent of daily temperature shocks.

Third, I estimate the relationship between economic damages due to power
plant emissions and daily temperatures for all large fossil power plants in
the US. Fossil power plants (i.e., coal and natural gas) currently account
for 60% of all electricity produced in the United States, and these plants
emit pollutants that can cause economic damages, mostly through detri-
mental impacts on human health. Applying estimates of the damages to
power plant emissions data, results in the familiar “V” relationship where
extreme temperatures cause increases in economic damages (or increases in

2 Throughout this paper, daily average temperatures are defined as the simple
average of the recorded minimum and maximum temperature for each day.
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emissions) relative to temperatures in the centre of the distribution. The
external economic damages due to power plant emissions attributable to high
temperatures are one order of magnitude larger than the private cost of the
additional electricity expenditures attributable to high temperatures. These
represent the first (and admittedly simple) estimates of the external costs of
adaptation through increased electricity demand.

Overall, the empirical results presented in this paper highlight some of the
challenges inherent to climate change adaptation aiming to protect human
health. On the one hand, it is now evident that the mortality risks asso-
ciated with extreme high temperatures have declined over a long period of
time and are small relative to the risks associated with extreme cold tempera-
tures. Further, other research has shown important cross-sectional differences
in vulnerability to heat shocks, where locations with higher exposure to
extreme heat face lower mortality risks than locations with lower exposure
(e.g., Barreca et al. 2015, Heutel et al. 2021). It therefore appears that the US
population can deploy an effective set of private investments, public health
campaigns, medical interventions, and behavioural changes to self-protect in
response exposure to extreme heat. On the other hand, these adaptations are
costly and measuring these costs is often difficult due to data constraints or
lack of data altogether. Further these costs may be composed of private and
external costs, which themselves can be even harder to quantify. There are a
few studies that attempt to estimate the private cost of adaptation to high
temperatures through increased electricity consumption (e.g., Deschenes and
Greenstone 2011, Auffhammer 2018). In the case of electricity consumption,
I find that the external component of the cost is large relative to the private
component, so previous studies may have dramatically underestimated the
cost of climate change adaptation.

2. Data sources and summary statistics
Four main data types are required for the empirical analysis presented in this
paper and all are taken from publicly available sources. The key variables
are a county-level crude mortality rate, state-level electricity consumption,
power plant emissions of local and global pollutants, and county-level eco-
nomic damages from power plant emissions.

Mortality rates. County-level mortality rates for the periods of 1960–1988
and 2000–2019 are obtained by combining data on monthly all-cause and
all-age mortality counts with annual population estimates. For 1960–1988,
the mortality counts are taken from the annual Multiple Cause of Death
(MCOD) files produced by the National Center for Health Statistics. The
publicly available files contain information on the month of death and the
county of residence of the deceased up to 1988. To best of my knowledge, pub-
licly available mortality count data with information on county of residence of
the deceased are not available from 1989 to 1999. For the 2000–2019 period,
monthly-level mortality count data are available at the county level though
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the Center for Disease Control Wonder online database, which reports these
data in a tabular form.3 Annual population at the county level are taken from
the National Cancer Institute SEER database4 for the years 1968 to 2019.
For the pre-1968 period, I linearly interpolate annual county-level population
using data from the 1960 Census of Population up to 1968. This produces
a sample of 2,924 to 3,074 counties in the continental United States with
valid observations on monthly crude mortality rate, defined as deaths from
all causes and all ages divided by total population. The counties included in
the sample represent 95% to 99% of the US population over the 1960–1988
and 2000–2019 periods.

Electricity consumption data. State-level data on annual consumption of
electricity in million kWh by end-use sector (residential, commercial, indus-
trial, and transportation) are taken from the Energy Information Administra-
tion’s State Energy Data System (SEDS). The data are available at the state
level (the smallest geographical unit available) for the period 1960–2019.5
Data on electricity prices by state, year and end-use sector are also taken
from SEDS.

Emissions from power plants and related economic damages. Electricity
generating unit-level data on emissions of nitrogen oxides (NOx), sulfur diox-
ide (SO2) and carbon dioxide (CO2) for fossil fuel-fired units are taken from
Continuous Emissions Monitoring System (CEMS) of the EPA’s Clean Air
Markets Division.6 The daily unit-level data are then aggregated to the plant
and month level over the period 2000–2018. The sample contains emissions
of pollutants for 1,279 plants per year on average.

I then use information on the marginal damage caused by emissions of NOx
and SO2 by the power plants in the sample from the Air Pollution Emissions
Experiments and Policy (APEEP, AP3) model (Muller and Mendelsohn 2006,
2009; Holland et al. 2020). The AP3 model provides marginal economic dam-
ages in dollars per ton of emission for the power plants in the sample and is
based on an exhaustive list of potential damages, including monetized reduc-
tion in yields of agricultural commodities and timber, depreciation of physical
materials, lost recreation services and monetized reductions in human health
(by far the largest component of the damages). An important feature of AP3
is that it provides a “source–receptor” matrix that links emissions at individ-
ual power plants (the sources) to damages at all counties potentially impacted
(the receptors), using a calibrated atmospheric air transport model. I will use
this feature to present an analysis of the spatial distribution of the damages
caused by the added electricity demand on extreme temperature days.

3 See https://wonder.cdc.gov/mcd.html.

4 See https://seer.cancer.gov/popdata/.

5 See www.eia.gov/state/seds/.

6 See https://ampd.epa.gov/ampd/.

https://wonder.cdc.gov/mcd.html
https://seer.cancer.gov/popdata/
http://www.eia.gov/state/seds/
https://ampd.epa.gov/ampd/
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To proceed, I compute the economic damage associated with emissions
of NOx, SO2 and CO2 from the power plants in the sample. Specifically, let
ENOx

pimy, ESO2
pimy, ECO2

pimy and denote the monthly NOx, SO2 and CO2 emissions
from power plant p, in county i, in month m and year y. These data are
obtained from the EPA–AQMD database. The marginal damages per ton
in receptor county j, resulting from emissions of plant p in source county i
are denoted by MDNOx

jpi and MDSO2
jpi and taken directly from the AP3 model.

The marginal damage of an additional ton of CO2 emission is assumed to be
$50, roughly in line with the current estimates of the social cost of carbon
for 2020 based on a 3% discount rate (Interagency Working Group on Social
Cost of Greenhouse Gases 2021). Assuming a linear relationship, we can then
estimate the total damage attributable to individual power plant emissions
at a given point in time as

TDpimy =

⎛
⎝ENOx

pimy ×
∑
j

MDNOx
jpi

⎞
⎠+

⎛
⎝ESO2

pimy ×
∑
j

MDSO2
jpi

⎞
⎠+

(
ECO2

pimy × 50
)
,

(1)

where the summation over j is over all counties in the sample.7 The vari-
able TDpimy provides a simple dollar denominated metric of the (estimated)
external cost of emissions from power plant activities. In the analysis below,
I also break down estimates for “local” externalities (NOx and SO2) and for
the global externality (CO2).

Weather data. The construction of the “binned” temperature variables
used in the analysis requires daily average temperature data at the county or
subcounty level. To this end, I draw from the Global Historical Climatology
Network daily (GHCNd) weather station level data produced by the National
Climatic Data Center. These data are then processed following the approach
in Barreca et al. (2016) to assign daily weather records to each county in the
continental US using an inverse distance-weighted average of all the weather
station measurements from the stations located within a fixed 300 km radius
of each county’s centroid. By construction, weather stations located closer to
a county’s centroid are given more weight in computing the average. Based
on this approach, I obtain a complete record of daily maximum and minimum
temperatures as well as the total daily precipitation for the counties in the
sample.

Summary statistics. Figure 1 shows the unconditional distribution of daily
average temperature in the sample. Each bar corresponds to one of ten ranges
(or “bins”) of daily average temperature (in F degrees), with the endpoints

7 Emissions from individual power plants typically cause damages in counties
that are within a few hundred kilometers of the plant. Thus MDNOx

jpi or MDSO2
jpi

can be equal or very close to 0 for many counties.



1234 O. Deschenes

FIGURE 1 Annual distribution of daily average temperature, 1960–2019
NOTES: Figure 1 shows the annual distribution of daily average temperatures (◦F), repre-
sented by the average number of days per year in temperature bin by county in the sample
between 1960 and 2019. [Colour figure can be viewed at wileyonlinelibrary.com .]

being less than 10 ◦F and greater than 90 ◦F.8 The height of each bar repre-
sents the average number of days per year (across all counties and years, and
weighted by county population) in each temperature bin. The modal tem-
perature bin is 70 ◦F to 79 ◦F, with 69.4 days on average per year across all
counties. However, the econometric models estimated below rely on monthly
within county variation in the realized daily temperatures. Figure 2 illustrates
this variation for the month of July in the county of Dallas, Texas, where the
city of Dallas is located. The dark blue bars represent the daily average tem-
perature distribution in July in Dallas county over 1960 to 2019, while the
pink (pale blue) bars represent the realized daily average temperature distri-
bution 2019 (2018), correspond to the years on record with the most (least)
90 ◦F days during the month of July. It is evident that July is a hot month in
Dallas county, with virtually no days of temperature with an average below
70 ◦F. On average, there are 3.9 days of >90 ◦F average temperature in July
in Dallas county, which is more than most other counties in the US. This
fixed climatic difference will be captured by the county–month fixed effects
in the analysis below. Importantly for econometric identification, there is a
large degree of within county–month variation in realized temperatures. For
example, comparing July 2018 and July 2019, we observe 14 days above 90 ◦F
in 2019 and a single day in 2018.

8 The 10 daily average temperatures bins in ◦C rounded to the closest integer
are: <−12, −12 to −7, −7 to −2, −1 to 4, 4–9, 10–15, 16–21, 21–26, 27–32,
>32.

http://wileyonlinelibrary.com
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FIGURE 2 Realized distribution of daily average temperatures in the month of July, Dallas
County, Texas

NOTES: Figure 2 shows the distribution of daily average temperatures in July in
Dallas County, Texas (◦F) between 1960 and 2019. The dark blue bars represent the
1960–2019 average, while the red (pale blue) bars correspond to the realization of the
temperature bin variables in 2018 and 2019, respectively. [Colour figure can be viewed at
wileyonlinelibrary.com .]

Table 1 reports summary statistics for the other variables used in
the empirical analysis. When applicable, the sample means and standard
deviations (in parentheses) are reported separately for the 1960–1988
and 2000–2019 samples. The annual crude mortality (total deaths per
1,000 population) dropped from 9.05 to 8.23 between the two periods.
Aggregate consumption of electricity in the residential sector increased
since the 1960s, from 544 to 1,356 (billion kWh) in 2000–2019. This strong
growth in consumption is also evident when looking at residential electricity
consumption per person, which increased from 2,487 kWh to 4,467 kWh, a
jump of 80% between the two periods. The next two rows report statistics
on annual expenditures in the residential sector ($2019). Total expenditures
averaged $172.3 billion since the 2000s. On a per person basis, real electricity
expenditures in the residential sector more than doubled from $275 per year
to $566 during the sample period. Another striking pattern in the large
reduction in across state variability in residential electricity expenditures
over time, as shown by the estimated standard deviations. The remaining
rows in table 1 present sample means for the power plants in the sample,
which are observed only from 2000 to 2018. The aggregate annual emission
of NOx amounts to 2.61 million tons per year, while SO2 and especially CO2
emissions are larger, at 6.12 and 2,195 million tons per year, respectively.
The last row reports the average marginal damage per ton of NOx and SO2

http://wileyonlinelibrary.com
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TABLE 1
Summary statistics

1960–1988 2000–2019

Annual all-cause crude mortality rate 9.05 8.23
(per 1,000 population) (2.13) (2.27)
Annual residential electricity consumption 5,44,032 13,56,266
(Million kWh)
Annual residential electricity consumption per capita 2,487 4,467
(kWh per person) (794.6) (127.4)
Annual residential electricity expenditures 62,377 1,72,279
(Million $2019)
Annual residential electricity expenditures 275 566
(Million $2019 per capita) (214.5) (39.0)
Total annual NOx emissions — 2.61
(Million tons)
Total annual SO2 emissions — 6.12
(Million tons)
Total annual CO2 emissions — 2194.7
(Million tons)
Marginal damage per ton of NOX and SO2 — 51,322
($2019 per ton) (36,098)

NOTES: Table 1 reports the sample average of the main dependent variables in the anal-
ysis for the 1960–1988 sample (column 1) and 2000–2019 sample (column 2). All dollar
figures in 2019 constant dollars.

emitted for all power plants in the sample and across all counties where
the estimated damages are experienced is $51,322 ($2019). This reflects an
average marginal damage per county of $4.37 per ton of NOx emitted and
$12.52 per ton of SO2 emitted.

3. Empirical approach
The empirical analysis below reports estimates of temperature response func-
tions relating outcomes that vary at the location-by-time level to transforma-
tions of daily weather data to the same spatial and temporal scales, following
the methodology in Deschenes and Greenstone (2011). These models are iden-
tified by presumed random temporal variation in weather distributions at
the county (or state) level, as illustrated in figure 2. Specifically, I estimate
log-linear models of the form

log(Yimy) =
∑
j

βjTMEANimyj + Ximyγ + δim + θsy + uimy, (2)

where log(Yimy) is the natural log of the outcome variable in location
i, month m and year y (e.g., county mortality rate or state electricity
consumption). The preferred models for log mortality rates and log power
plant emissions also includes county-by-month fixed effects (δim) and
state-by-year fixed effects (θsy). The county-by-month fixed effects control
for all year-invariant cross-sectional differences in the determinants of the
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outcomes across counties and months of the year, thus accounting for spatial
differences in the seasonality of the outcomes. Such seasonality reflects a
host of factors, including climatic differences. The state-by-year fixed effects
account for all factors common to a state within a year (e.g., local economic
activity and state-level health or environmental policy changes, such as
changes to state Medicaid programs or emission regulation for power plants)
that predict the outcome of interest. Naturally, these fixed effects also control
for time-varying changes in determinants of the outcomes that are common
across state (e.g., the introduction of new technologies or national-level
policies). This level of spatially and temporally granular control afforded
by the county-by-month and state-by-year fixed effects, which effectively
control for state-specific unobserved shocks, is made possible by the novel
county-level (or plant-level) data used in this paper.

The independent variables of primary interest are the realized binned daily
average temperature variables in each county–month–year (TMEANimyj),
which correspond to the number of days in a location–month–year where
the daily average temperature is in one of 10 “bins,” as depicted in figure 1.
As is required with this specification, one of the bins is the reference tem-
perature (60 ◦F to 69 ◦F in this paper) and so the reported β estimates
correspond to the impact of an additional of temperature in bin j rela-
tive to the reference temperature.9 An additional feature implied by this
functional form is that the marginal effect of temperature on the outcomes
can vary across the entire temperature distribution in a flexible way, albeit
with the restriction that it is constant within the 10 ◦F intervals underly-
ing the temperature bins. Natural, and presumed exogenous, variation in the
realized temperature distribution across years for each county–month pair
underpins the identification of the parameters of the temperature–response
function (βj). Importantly, the econometric specification also accounts for
shocks at the state–year level. Any remaining confounder that could bias
the temperature–response function would need to vary with a higher level of
interaction (e.g., a shock common to both mortality rates and realized temper-
ature in a given county–year–month). The vector of other control variables
(X imy) includes a quadratic term in total monthly precipitation.

It is important to note that other aspects of daily weather such as humidity
and wind speed could also influence the outcomes, both individually and inter-
actively with realized temperature. Unfortunately, these data are not available
at the required spatial and time scale going back to 1960 and therefore are
omitted in the rest of the analysis. In the case of the temperature–mortality
relationship, the evidence in Barreca (2012) indicates that omitting humid-
ity leads to estimates of temperature impacts that are overstated for cold

9 This normalization is necessary since the number of days in a given month is
constant.
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temperatures but does not alter the estimates of high temperatures on mor-
tality risks.

4. Results
4.1. Temperature and mortality risk
Figure 3 presents estimates of the temperature–mortality relationship (the
estimates of the βj parameters from equation (1) are shown by the yellow
circles). Each βj parameter corresponds to the effect of an additional day
of temperature in bin j on log monthly mortality rates, relative to a day
of temperature in the reference category (60 ◦F to 69 ◦F). The shaded area
around the point estimates correspond to the 95% confidence intervals with
standard errors clustered at the county level. Panel (a) uses the data for 1960
to 1988, panel (b) uses the data for 2000 to 2019 and panel (c) plots the
difference between the 2000–2019 and 1960–1988 estimates.

The estimates in these figures confirm that three findings from the previ-
ous literature also hold with county-level data and up to the recent period
of 2000–2019. First, it is evident that mortality risk (as represented by the
log monthly mortality rate) is highest at the extremes of the daily aver-
age temperature distribution. For example, in panel (a), the point estimates
imply that an additional day of temperature with an average above 90 ◦F
increases the mortality rate by 1% (0.0098 in log units) relative to the refer-
ence temperature of 60 ◦F to 69 ◦F (figure 3(a)).10 Second, the sharp decline
in the relative mortality impact of high temperatures documented in Barreca
et al. (2016) is also apparent up to 2019 (figures 3(b) and 3(c)).11 In particu-
lar, the impact of extreme high temperatures on log monthly mortality rates
has declined from 0.0098 to 0.0016 between the earlier and later period, which
corresponds to a decline of roughly 84%. Third, the estimated impact of rel-
atively cold temperatures (i.e., daily average temperatures less than 30 ◦F)
has remained essentially unchanged when comparing the 1960–1988 period
with the 2000–2019 period (figure 3(c)). If anything, the estimated effect of
very cold temperatures (<10 ◦F) on mortality risk is larger in the 2000–2019
sample, a result the previous literature has not emphasized before. The stark
difference in the temporal evolution of “cold-related” vs. “heat-related” mor-
tality over time points to important benefits for heat adaptation and to large
remaining adaptation gaps for cold-related mortality.

To put these divergent trends in temperature-related mortality risks in
perspective, I compute predicted counterfactual mortality counts using the

10 Many papers have documented substantial heterogeneity in the responses to
extreme temperatures across different regions of the country or climatic zones.
See, e.g., Barreca et al. (2015, 2016) and Heutel (2020).

11 The data in Barreca et al. (2016) are the state–year–month level and stops in
2004.
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(a)

(b)

(c)

FIGURE 3 Estimated temperature-log mortality rate relationship in the United States (a)
1960–1988 (b) 2000–2019 (c) Difference between 2000–2019 and 1960–1988
estimates

NOTES: Figure 3 plots the estimated temperature-log mortality rate relationship for the
sample counties over 1960–2019. Panel (a) corresponds to estimates for the 1960–1988
period, panel (b) to the 2000–2019 period and panel (c) to the difference between the
two sets of estimates. The yellow circles correspond to the point estimates from fitting
equation (2) and the shaded area shows the 95% confidence intervals. All estimates are in
log monthly mortality rate units and relative to the reference temperature bin of 60 ◦F to
69 ◦F. [Colour figure can be viewed at wileyonlinelibrary.com .]

http://wileyonlinelibrary.com
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fitted regression models evaluated at assumed baseline distributions of daily
average temperature. I define the baseline “hottest” and “coldest” years over
2000–2019 as the years where the average number of days with daily average
temperature exceeding 80 ◦F across all US counties is the largest (2011) and
smallest (2004).12 I then use the estimated temperature–mortality relation-
ship over 2000–2019 to compute predicted mortality counts for each county
using the realized daily average temperature distribution of each county in
2011 (baseline hottest year) and 2004 (baseline coldest year) as follows:13

M̂c = POPc × DRATEc ×
12∑

m=1

∑
k

β̂2000−19
k

(
TMEAN2011

cmk − TMEAN2004
cmk

)
,

(3)

where POPc and DRATEc are the average total population and annual mor-
tality rates in county c over 2000–2019 and TMEANcmk represents daily
average temperature bins as defined earlier. The index m corresponds to
months of the year (January = 1, December = 12) and k corresponds to
selected ranges (bins) of the daily average temperature distribution for this
illustrative calculation. Therefore, the variable M̂c represents the predicted
annual mortality for each county due to temperatures in range k, evaluated
for a hot baseline year (2011), relative to the predicted annual mortality in
the same county and temperature range, but in a cold baseline year (2004). I
consider four daily average temperature bins for this exercise: <10 ◦F, 10 ◦F
to 19 ◦F, 80 ◦F to 89 ◦F and> 90 ◦F.

As such, M̂c highlights the importance of these specific temperature ranges
(corresponding to the extremes of the temperature distribution) as drivers of
annual mortality irrespective of the choice of the “reference” temperature bin
since the differences in binned temperature variables in 2011 and 2004 sum to
zero. A similar approach can be used to quantify the “gains” from the adap-
tation that underlies the sharp decline in the temperature–mortality rela-
tionship between 1960 and 1988 and 2000 and 2019 documented in figure 3.
To this end, I replace β̂2000−19

k in equation (3) by β̂1960−8
k − β̂2000−19

k , the
difference in the relative impact of temperature in range k on log monthly
mortality rates between the two time periods.

Table 2 reports a series of estimates of predicted annual temperature-
related mortality and of the estimated gains from adaptation to cold and
high temperatures. Panel A shows that, in the baseline hot year (2011), 764
deaths occurred in the United States because of high temperatures (defined as
days with average temperature above 80 ◦F (26.7 ◦C), as represented by the
two highest bins in the temperature–mortality relationship), relative to the

12 Naturally, there are many other possible metrics to select those baseline years.

13 These calculations ignore the “re-transformation” bias due to exponentiating
the fitted values from a log-linear regression.
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TABLE 2
Predicted impact of temperature on annual mortality, residential electricity consumption
and economic damage from power plant emissions

Total by tercile

Total for US Lowest Middle Highest

A. Predicted annual
temperature-related mortality
(deaths/year)

Cold-related (< 20 ◦F) 2,744 −2,242 7 4,978
Heat-related (> 80 ◦F) 764 −163 −3 930
B. Gains from adaptation to

extreme temperatures (avoided
deaths/year)

Cold-related (< 20 ◦F) −203 −1,286 −1 1,085
Heat-related (> 80 ◦F) 8,256 −982 21 9,217
C. Predicted annual

temperature-related electricity
consumption in residential sector
($ million/year)

Cold-related (< 20 ◦F) 32 −10 2 40
Heat-related (> 80 ◦F) 357 −9 68 297
D. Predicted annual

temperature-related power sector
emission damages ($ million/year)

Cold-related (< 20 ◦F) 1,022 −957 1 1,980
Heat-related (> 80 ◦F) 7,904 −317 4 8,217

NOTES: Table 2 reports predicted heat (and cold) related outcomes in levels from applying
fitted equation (2) to the realized daily average temperatures distribution for 2011 and 2004
in each county (panels A, B and D) and state (panel C). All dollar figures in 2019 constant
dollars. See the text for more details.

predicted cold-related mortality in the baseline cold year (2004). Using the
same metric, 2,744 annual deaths are attributable to cold temperatures (days
with average temperature below 20 ◦F (−6.7 ◦C), the two lowest temperature
bins in the model) in the chosen baseline cold year, relative to the baseline
hot year. The finding of higher levels of cold-related mortality compared to
heat-related mortality primarily reflects the result in figure 2(b) that the
marginal effects of cold temperatures on mortality risk exceed the marginal
effects of high temperatures. Other papers have also shown a higher impact
of low temperatures as opposed to high temperatures on US-wide annual
mortality counts (e.g., Deschenes and Moretti 2009).

Next, I report the estimates of M̂c across the terciles of its distribution, as
shown in the right side of panel A. Specifically, the estimates of predicted cold
and heat-related mortality are reported by terciles each containing roughly
1,000 counties. The burden of mortality related to extreme temperatures is
not distributed evenly across counties, with the lowest tercile experiencing
reductions in cold and heat-related mortality due to a reduced exposure to
the relevant temperatures. Virtually all the “excess” temperature-related mor-
tality occurs in the upper tercile, the group of counties where the exposure
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to cold days and hot days increased the most between the 2011 and 2004
baseline years.14

Panel B in table 2 completes the exercise by reporting the estimated
gains from adaptation, which correspond to the change in predicted cold and
heat-related mortality driven by the change in the temperature–mortality
relationship between the 1960–1988 and 2000–2019 periods and documented
in figure 2(c). The entries in the table correspond to annual “avoided deaths”
and so positive numbers denote a benefit from adaptation. The patterns are
the reverse of those observed in panel A. There is a remarkably large reduction
in heat-related mortality, with 8,256 avoided deaths due to the reduction in
the marginal effect of temperature on mortality risks for temperatures above
80 ◦F (most notably the mortality risk due to >90 ◦F days). In contrast,
the marginal effect of cold temperature on mortality rates slightly increased
between the two periods of analysis, which resulted in a small counterfactual
increase in cold-related mortality (203 additional deaths in the colder base-
line year (2004) compared to the hotter baseline year (2011)). This implies
that economic and technological progress (including advances in medicine
and public health) and all behavioural adjustments to mitigate the impact
of extreme temperature on mortality risks since the 1960s did not on net
lead to improved resilience to cold temperature exposures, in sharp contract
with the elevated resilience to extreme heat. In addition, the estimated gains
from adaptation across terciles of counties further highlight a large degree of
inequality in the gains from adaptation across different counties in the US.

4.2. Temperature and electricity demand
One of the primary drivers of the reduction in heat-related mortality in the
United States is the diffusion and utilization of residential air conditioning
(A/C) that began in the early 1960s (Barreca et al. 2016). Naturally, increased
utilization of A/C or other cooling technologies requires increased electricity
demand, which is often interpreted as a proxy for the demand for adapta-
tion services. Several papers have documented how extreme temperatures
drive increases in total energy demand or electricity demand (Deschenes and
Greenstone 2011, Aroonruengsawat et al. 2021). This section briefly revisits
this relationship and adds to the literature by considering more recent data
by assessing the evolution of the temperature–electricity relationship over
time and by analyzing demand data from other end-use sectors beside the
residential sector.

Figure 4(a) presents the estimated relationship between daily average
temperatures and log annual electricity consumption (in million kWh) using
data for 1960–1988. The econometric specification is similar to equation (2),

14 For example, the average difference in the number of days with average
temperature between 80 ◦F to 89 ◦F in the 2011 and 2004 distribution across
all counties is +1.5 and + 0.27 for days >90 ◦F.
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FIGURE 4 Estimated temperature-log electricity consumption relationship, 1960–2019 (a)
Residential sector, 1960–1988 (b) Residential sector, 2000–2019 (c) Commer-
cial, industrial and transportation sectors, 2000–2019

NOTES: Figure 4 plots the estimated temperature-log electricity consumption relationship
for the sample of states over 1960–2019. Panel (a) corresponds to estimates for residential
sector over the 1960–1988 period, panel (b) to the 2000–2019 period (residential sector)
and panel (c) to the estimates for the commercial, industrial and transportation sectors
over 2000–2019. The yellow circles correspond to the point estimates and the shaded area
shows the 95% confidence intervals. All estimates are in log annual electricity consumption
units and relative to the reference temperature bin of 60 ◦F to 69 ◦F. [Colour figure can be
viewed at wileyonlinelibrary.com .]

http://wileyonlinelibrary.com
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except that the electricity demand data provided by the Energy Information
Administration is recorded at the state–year level, and so the daily average
temperature bin variables are correspondingly defined at the same spatial and
temporal scale. Further, the regression model includes controls for state and
year fixed effects, state-specific linear time trends and quadratic in annual
precipitation and state population. The interpretation of the estimated curve
is the same as for figure 3, with the reference temperature being 60 ◦F to
69 ◦F.

Figure 4(a) shows a flat V-shaped relationship between daily average tem-
peratures and log annual electricity demand in the residential sector, with
higher responses at lower and higher temperatures. For example, one addi-
tional day with average temperature above 90 ◦F is predicted to increase log
residential demand by 0.004 log points, or roughly 0.4%. The estimated effect
of the highest temperature on electricity demand during the 1960–1988 period
is highly imprecise, as shown by the wide confidence interval that includes
zero. Panel (b) in figure 4 replicates the analysis, but for the 2000–2019
period. The overall shape of the relationship is similar, but the precision of
the estimates is notably stronger. The temperature profile of demand appears
to be increasing almost linearly from 70 ◦F onwards while it is flatter for the
colder temperature range. This has important implications for anticipating
how climate change will alter electricity demand in the US residential sector.
See Rode et al. (2021) for a recent global analysis.

Figure 4(c) reports the corresponding temperature-log electricity demand
relationship, but now estimated with the combined consumption from the
transportation, industrial and commercial sectors (the other three end-use
sectors in the EIA data). To the best of my knowledge, this relationship has
not been examined in previous research. The results document a strikingly
different picture, with a generally flat profile and eight out of nine estimated
coefficients being statistically indistinguishable from a null effect at the 5%
significance level (the one exception being 80 ◦F to 89 ◦F). Overall, the evi-
dence in figure 4 points to a distinct and economically important relationship
between very high temperature days and annual residential electricity demand
as opposed to other end-use sectors. Further, these patterns are consistent
with increased A/C usage (or usage of other electricity-dependent cooling
technologies) in the residential sector on high temperature days, as opposed
to an overall increase in the sensitivity of demand to extreme temperatures
across the entire support of the temperature distribution.

I then use the estimated electricity demand–temperature relationship
for 2000 to 2019 in figure 4(b) to quantify the amounts of excess electricity
consumed in response to hot or cold days using the same approach described
earlier for annual mortality in table 2. In order to facilitate comparisons
with other outcomes, I convert demand in kWh to expenditures by using the
average price of electricity in the residential sector over 2000–2019 ($2019).
The results are reported in panel C of table 2 and are economically small.
The estimates indicate that the predicted residential electricity demand in
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the baseline cold year relative to the baseline hot year led to an additional
electricity expenditure of $32 million ($2019) in the residential sector.
Heat-related electricity expenditures are more than an order of magnitude
larger, amounting to $357 million. Almost all of that added demand originates
in counties in the upper tercile of the distribution.15

To interpret the magnitude of these estimates, it is useful to compare them
to aggregate annual electricity expenditures in the residential sector, which
averaged $171 billion per year since 2000. Thus the “excess” heat-related
electricity consumption in the residential sector amounts to 0.2% of its total
annual expenditures. These additional electricity expenditures are only one
of the many private costs of adapting to extreme temperature borne by US
households. The estimates reported here suggest that while those expendi-
tures may be economically important for some households, the aggregate
amounts are relatively small. The next section of this paper turns to a quan-
tification of the external costs of adapting to warming temperatures through
greater consumption of fossil fuel-generated electricity.

5. Temperature and economic damages from power plant
emissions
Electricity is a vital input in for both economic activity and human welfare.
Countless health technologies and other technologies that increase comfort
and wellbeing require electricity as in input. At the same time, it is also well
understood that electricity generation produces emissions of global and local
pollutants that can cause large amounts of economic and health damages.
This section reports simple empirical estimates of the economic damage asso-
ciated with emissions from power plants generated in response to extreme
temperatures.

Figure 5 presents the estimated relationship between daily average
temperatures and log total monthly economic damages from power plant
emissions across all US counties impacted (in million $2019) using data for
2000–2018. The analysis is made possible by combining monthly power plant
emission data from the EPA–AQMD data and the marginal damage per ton
of emissions from the AP3 model. The regression specification follows from
equation (1) and includes plant fixed effects (which is isomorphic to county
fixed effects in this setting), state-by-year fixed effects and county-by-month
fixed effects. Like in previous figures, the reference temperature category is
60 ◦F to 69 ◦F.

15 Predicted electricity consumption due to extreme temperature for the entire
end-use sector in the US (residential, commercial, industrial and
transportation) is similar in magnitude as the entries reported in panel C of
table 2 for the residential sector alone.
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FIGURE 5 Estimated relationship between temperature and economic damages from
power plant emissions, 2000–2018

NOTES: Figure 5 plots the estimated temperature-log economic damage relationship for
the sample counties over 2000–2018. Economic damages from power plant emissions ($2019)
are constructed using monthly emission of NOx, SO2 and CO2 from the EPA–AQMD
data, combined with estimates of marginal damages per ton of emissions from AP3.
Marginal damage per ton of CO2 emissions assumed to be $50. Shaded area shows the
95% confidence intervals. Estimates are in log monthly economic damage units and rela-
tive to the reference temperature bin of 60 ◦F to 69 ◦F. [Colour figure can be viewed at
wileyonlinelibrary.com .]

The estimated relationship between daily average temperatures and eco-
nomic damages due to power plant emissions follows the typical “V” or “U”
shape documented for the other outcomes. Relative to the reference tempera-
ture, one additional day with average temperature above 90 ◦F is predicted to
increase log monthly damages by 0.014 log points (∼1.4%), while the corre-
sponding estimate for days with average temperature below 10 ◦F is 0.018 ◦log
points (∼1.8%). The 95% confidence interval shown with the gray shade high-
lights the high degree of statistical precision of these estimates. While not
shown here, the proportionate responses of the “local” pollutants (NOx and
SO2) and of the “global” pollutant (CO2) to temperature shocks are simi-
lar. Overall, figure 5 indicates that extreme temperature days cause sizable
increases in economic damages due to power plant emissions. Moving forward,
the predicted increased frequency of extreme temperatures will continue to
cause important external damages if the source fuel mix in power plants
remains the same as was observed over the 2000–2018 period.

Panel D in table 2 takes the empirical estimates from figure 5 and uses
them to compute the magnitude of the economic damages from fossil-fueled
electricity generation attributable to hot (>80 ◦F) and cold (<20 ◦F) days
using the 2011 and 2004 county-specific distributions of daily average

http://wileyonlinelibrary.com
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temperatures as explained in equation (3). Panel D points to a stunning
difference between the estimates of the external and the private cost of
adaptation through added electricity consumption. The predicted external
economic damages in the baseline cold year (2004) relative to the baseline
hot year (2011) amounts to $1.0 billion per year, more than 30 times larger
than the private cost of additional residential electricity consumption ($32
million).

The magnitude of the external economic damages due to power plant emis-
sions in the baseline hot year relative to the cold year is even more remarkable:
The total across all US counties is $7.9 ◦billion, eight times larger than the
external costs due to lower temperatures and one order of magnitude larger
than the private cost counterpart from additional residential electricity con-
sumption ($357 million, panel C, table 2).

Focusing on the local externalities due to NOx and SO2 emissions alone
reduces this estimate from $7.9 to $5.4 billion, underscoring the importance
of local pollutants emitted by the power sector as the leading source of the
external economic damages of extreme temperature adaptation. The analysis
across terciles of counties further highlights the large degree of inequality of
these impacts across the US.

6. Conclusion
This short paper has revisited and expanded on the rapidly growing eco-
nomic literature on the health impacts of extreme temperature and the costs
of health adaptation to rising temperatures in the United States. While more
research remains on the agenda, there are three new contributions that are
worth highlighting. First, the reduction in the impact of high temperature
on mortality risks documented in Barreca et al. (2016) has further continued
in the 2000s and 2019s, consistent with an increase in the quantity or in the
effectiveness of heat adaptation. No such pattern is observed for the mortal-
ity risk associated with colder temperatures, which has remained virtually
constant since the 1960s. The relative effect of a day of temperature with
an average below 30 ◦F (−1.1 ◦C) is now three times larger than the relative
effect of a 90 ◦F (32 ◦C) average temperature day. This striking difference may
be indicative of a sizable wedge between the costs of adapting to cold relative
to the costs of adapting to heat in order to preserve health.

Second, I re-examine the temperature–electricity demand relationship
using data from 1960 to 2019. Unlike the patterns for mortality risks, I
do not observe a significant change in the estimated effect of high (or
low) temperatures on residential electricity demand over time. In addition,
electricity demand in other the end-use sectors such as commercial, industrial
and transportation is essentially uncorrelated with temperature fluctuations.

Finally, I provide a first (and admittedly simple) attempt at quantifying
the external costs of adapting to extreme heat by estimating the relation-
ship between temperatures and the economic damages due to the emissions
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of local and global pollutants produced by the electricity generation sector.
The magnitude of the external economic damages due to power plant emis-
sions in response to heat are an order of magnitude larger than the private
cost counterpart in the US residential sector. These external costs have not
been analyzed before, and so estimates of the social costs of climate change
adaptation that ignore them may be severely underestimated.

Adaptation to extreme heat in the United States has produced substantial
health benefits, but much remains unknown about the costs of adaptation.
More research needs to empirically inform the private and external costs of
climate change adaptation. A key challenge is that these economic costs are
often difficult to measure and available data is scarce. The importance of this
question, and its inherent challenges, are further magnified when considering
that future demand for air conditioning and other electricity-powered cooling
technologies will be concentrated in low- and middle-income countries in the
tropics, where 40% of the world’s population resides (Biardeau et al. 2020).
More attention needs to be devoted to increasing opportunities and find-
ing solutions to protect human health from extreme heat while at the same
minimizing the damages from the local and global externalities caused by
the electricity generation necessary for meeting the increased cooling demand
that climate change will bring.
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